首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   862篇
  免费   36篇
  国内免费   20篇
测绘学   8篇
大气科学   121篇
地球物理   186篇
地质学   364篇
海洋学   30篇
天文学   181篇
综合类   4篇
自然地理   24篇
  2021年   13篇
  2020年   13篇
  2019年   11篇
  2018年   13篇
  2017年   13篇
  2016年   23篇
  2015年   27篇
  2014年   28篇
  2013年   43篇
  2012年   41篇
  2011年   42篇
  2010年   34篇
  2009年   40篇
  2008年   47篇
  2007年   31篇
  2006年   33篇
  2005年   36篇
  2004年   31篇
  2003年   23篇
  2002年   28篇
  2001年   16篇
  2000年   22篇
  1999年   18篇
  1998年   14篇
  1997年   7篇
  1996年   13篇
  1995年   11篇
  1994年   14篇
  1993年   10篇
  1992年   8篇
  1991年   17篇
  1990年   8篇
  1989年   5篇
  1988年   10篇
  1987年   7篇
  1986年   6篇
  1985年   6篇
  1984年   11篇
  1983年   13篇
  1981年   16篇
  1980年   12篇
  1979年   6篇
  1978年   12篇
  1977年   8篇
  1976年   13篇
  1975年   7篇
  1974年   6篇
  1973年   10篇
  1972年   6篇
  1960年   4篇
排序方式: 共有918条查询结果,搜索用时 46 毫秒
31.
Ultramafic rocks and gabbros are exposed in the southern Puna (NW Argentina) in tectonic association with continental arc-related Ordovician (volcano) sedimentary successions and granitoids. The origin of this mafic rock suite has been debated for three decades as either representing an Ordovician terrane suture, primitive Ordovician arc-related rocks or relics of the pre-Ordovician basement in tectonic contact with the Ordovician retro-arc basin successions. We present the first U–Pb ages of primary and inherited zircon from gabbros of this mafic–ultramafic assemblage. LA-ICP-MS analyses on cores and rims of these zircon grains yielded a concordia age of 543.4 ± 7.2 Ma for the gabbroic rocks. Other analysed zircons have Mesoproterozoic, and Early Ediacaran core and rim ages indicating that the magmas also assimilated Meso- and Neoproterozoic crustal material prior to final crystallization. The mafic rocks witnessed higher metamorphic grade than associated Ordovician rocks, which are unmetamorphosed or only affected by anchimetamorphism. The gabbros are mostly tholeiitic and enriched in Zr, Th, as well as other incompatible elements and have εNd t=540Ma ranging from 1.3 to 7.4 with most of the values between 5 and 7. 147Sm/144Nd ratios show evidence of weak crustal contamination. The mafic rocks do not reveal any affinity to mid-ocean ridge basalts in their geochemistry but point instead to an emplacement in an active plate margin arc environment. Chromites from ultramafic rocks show typical Ti, Al, Cr#, Fe3+ abundances found in magmatic arc rocks. The formation of the gabbros and the associated ultramafic rocks in the southern Argentine Puna is related to the evolution of the margin of the Pampia terrane, including the Puncoviscana basin, during the Late Neoproterozoic and earliest Cambrian. In contrast to previous interpretations, the rocks predate the Ordovician evolution of the Central proto-Andean active margin. Consequently, interpretations assuming these rocks to represent an oceanic terrane suture of Ordovician age have to be dismissed as much as all palaeotectonic models that define Ordovician terranes in the Central Andes based on assumption that the ultramafic rocks and gabbros exposed in the southern Puna mark plate boundaries.  相似文献   
32.
The study of fluid inclusions in high-grade rocks is especially challenging as the host minerals have been normally subjected to deformation, recrystallization and fluid-rock interaction so that primary in- clusions, formed at the peak of metamorphism are rare. The larger part of the fluid inclusions found in metamorphic minerals is typically modified during uplift. These late processes may strongly disguise the characteristics of the "original" peak metamorphic fluid. A detailed microstructural analysis of the host minerals, notably quartz, is therefore indispensable for a proper interpretation of fluid inclusions. Cathodoluminescence (CL) techniques combined with trace element analysis of quartz (EPMA, LA- [CPMS) have shown to be very helpful in deciphering the rock-fluid evolution. Whereas high-grade metamorphic quartz may have relatively high contents of trace elements like Ti and A1, low- temperature re-equilibrated quartz typically shows reduced trace element concentrations. The result- ing microstructures in CL can be basically distinguished in diffusion patterns (along microfractures and grain boundaries), and secondary quartz formed by dissolution-reprecipitation. Most of these textures are formed during retrograde fluid-controlled processes between ca. 220 and 500 ℃, i.e. the range of semi-brittle deformation (greenschist-facies) and can be correlated with the fluid inclusions. In this way modified and re-trapped fluids can be identified, even when there are no optical features observed under the microscope.  相似文献   
33.
Doppler images are presented for the RS CVn-type binary ζ And. Our upgraded Doppler imaging code TempMapε takes into account the distorted geometry of the primary giant component. On the maps several low latitude spots are restored with a temperature contrast of about 1000 K. Some weak polar features are also found. Cross-correlation of the consecutive Doppler-maps suggests solar-like differential surface rotation.  相似文献   
34.
The distinct structures ta comet Halley's dust tail around the beginning of March 1986 are analyzed by means of a computer simulation based on nucleus data obtained by the Giotto mission. It is shown that the assumption of a considerable free precession is required to understand the ground based dust tail observations from that time supposing a rotational period of some 50 hr. But a precession-free rotation with a period of about 7 days does not contradict an analysis of the dust tail structure. In both cases, an asymmetric distribution of the relevant emission sources is required.  相似文献   
35.
Abstract— Two rare, spinel-bearing, Al-rich chondrules have been identified in new chondrite finds from Roosevelt County, New Mexico—RC 071 (L4) and RC 072 (L5). These chondrules have unusual mineralogies, dominated by highly and asymmetrically zoned, Al-Cr-rich spinels. Two alternatives exist to explain the origin of this zoning—fractional crystallization or metamorphism. It appears that fractional crystallization formed the zoning of the trivalent cations (Al, Cr) and caused a localized depletion in chromites around the large Al-Cr-rich spinels. The origin of the zoning of the divalent cations (Fe, Mg, Zn) is less certain. Diffusive exchange and partitioning of Fe and Mg between olivine and spinel during parent body metamorphism can explain the asymmetric zoning of these elements. Unfortunately, appropriate studies of natural and experimental systems to evaluate the formation of zoning of the divalent cations by fractional crystallization have not yet been conducted. The bulk compositions of the chondrules suggest affinities with the Na-Al-Cr-rich chondrules, as would be expected from the abundance of Al-Cr-rich spinels. Melting of rare and unusual precursors produced the compositions of Na-Al-Cr-rich chondrules, possibly including a spinel-rich precursor enriched in Cr2O3 and ZnO. The two chondrules we studied have larger modal abundances of Al-Cr-rich spinels than reported in other Na-Al-Cr-rich chondrules of similar composition, and Al-rich chondrules even more enriched in spinel are reported in the literature. These differences indicate that factors other than bulk composition control the mineralogy of the chondrules. The most important of these factors are the temperature to which the molten chondrule was heated and the cooling rate during crystallization. These two chondrules cooled rapidly from near the liquidus, as indicated by the zoning, occurrence and sizes of spinels, radiating chondrule textures and localized chromite depletions. The range of mineralogies in other Al-rich chondrules of similar composition reflect a range of peak temperatures and cooling rates. We see no reason to believe that this range is fundamentally different from the range of thermal histories experienced by “normal” Fe-Mg-rich chondrules.  相似文献   
36.
Abstract— We report the first petrologic examination of all stone meteorites of Fayette County, Texas. The 10 stones represent four or five different fall events. The three recovered Bluff stones represent two falls. Bluff (a), which includes the 145.5-kg Bluff #1 stone, is classified as L5(S4), whereas Bluff (b) is classified as L4(S3) and is represented by a single stone. The studied Cedar stones are classified as H4(S3), and all four Cedar stones appear to define a strewnfield. Round Top (a), classified as L5(S3) and represented by two stones, is unrelated to either Bluff or Cedar. Round Top (b) [H4(S3); 1 stone], whose exact provenance is unknown, might be a transported fragment of the Cedar shower.  相似文献   
37.
Abstract— In this paper, we review the mineralogy and chemistry of calcium‐aluminum‐rich inclusions (CAIs), chondrules, FeNi‐metal, and fine‐grained materials of the CR chondrite clan, including CR, CH, and the metal‐rich CB chondrites Queen Alexandra Range 94411, Hammadah al Hamra 237, Bencubbin, Gujba, and Weatherford. The members of the CR chondrite clan are among the most pristine early solar system materials, which largely escaped thermal processing in an asteroidal setting (Bencubbin, Weatherford, and Gujba may be exceptions) and provide important constraints on the solar nebula models. These constraints include (1) multiplicity of CAI formation; (2) formation of CAIs and chondrules in spatially separated nebular regions; (3) formation of CAIs in gaseous reservoir(s) having 16O‐rich isotopic compositions; chondrules appear to have formed in the presence of 16O‐poor nebular gas; (4) isolation of CAIs and chondrules from nebular gas at various ambient temperatures; (5) heterogeneous distribution of 26Al in the solar nebula; and (6) absence of matrix material in the regions of CAI and chondrule formation.  相似文献   
38.
Abstract— Fine‐grained, heavily‐hydrated lithic clasts in the metal‐rich (CB) chondrites Queen Alexandra Range (QUE) 94411 and Hammadah al Hamra 237 and CH chondrites, such as Patuxent Range (PAT) 91546 and Allan Hills (ALH) 85085, are mineralogically similar suggesting genetic relationship between these meteorites. These clasts contain no anhydrous silicates and consist of framboidal and platelet magnetite, prismatic sulfides (pentlandite and pyrrhotite), and Fe‐Mn‐Mg‐bearing Ca‐carbonates set in a phyllosilicate‐rich matrix. Two types of phyllosilicates were identified: serpentine, with basal spacing of ?0.73 nm, and saponite, with basal spacings of about 1.1–1.2 nm. Chondrules and FeNi‐metal grains in CB and CH chondrites are believed to have formed at high temperature (>1300 K) by condensation in a solar nebula region that experienced complete vaporization. The absence of aqueous alteration of chondrules and metal grains in CB and CH chondrites indicates that the clasts experienced hydration in an asteroidal setting prior to incorporation into the CH and CB parent bodies. The hydrated clasts were either incorporated during regolith gardening or accreted together with chondrules and FeNi‐metal grains after these high‐temperature components had been transported from their hot formation region to a much colder region of the solar nebula.  相似文献   
39.
We present new polarimetric and photometric observations of the high-albedo Asteroid 64 Angelina in the UBVRI wavebands at phase angles ranging from 0.43° to 13.02° during oppositions in 1995, 1999, and 2000/2001. The polarization opposition effect has been observed in the form of a sharp peak of negative polarization with amplitude of about −0.4% centered at αmin≈1.8°, which is superimposed on the regular negative polarization branch. The amplitude of the polarization opposition effect appears to be apparition-dependent. Our photometric data confirm the early detected by Harris et al. [1989. Phase relations of high-albedo asteroids: The unusual opposition brightening of 44 Nysa and 64 Angelina. Icarus 81, 365-374] of a very strong and unusually narrow opposition spike, i.e., brightness opposition effect, for Angelina. Thus, 64 Angelina is the first asteroid for which both the polarization opposition effect and the brightness opposition effect have been detected. We observed that the polarization opposition effect as well as the regular negative polarization branch depends on the wavelength of scattered light, but in different manners. In addition, the colors B-V and V-R show little phase-angle dependence, while the color U-B increases with increasing phase angle, thus indicating that the amplitude of the brightness opposition effect is larger in the U band and almost the same in the B, V, and R bands. It appears that all colors indices begin to increase with decreasing phase angle to zero. The composite lightcurve computed with a period of 8.752 h has amplitude of 0.13 magnitude.  相似文献   
40.
Sulfurous acid (H2SO3) has never been characterized or isolated on Earth. This is caused by the unfavorable conditions for H2SO3 within Earth's atmosphere due to the high temperatures, the high water content and the oxidizing environment. Kinetic investigations by means of transition state theory showed that the half-life of H2SO3 at 300 K is 1 day but at 100 K it is increased to 2.7 billion years. Natural conditions to form H2SO3 presumably require cryogenic SO2 or SO2/H2O mixtures and high energy proton irradiation at temperatures around 100 K. Such conditions can be found on the Jupiter moons Io and Europa. Therefore, we calculated IR-spectra of H2SO3 which we compared with Galileo's spectra of Io and Europa. From the available data we surmise that H2SO3 is present on Io and probably but to a smaller extent on Europa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号